色情网站发展历史

当你在凝视深渊的时候,深渊也在凝视着你 -- 尼采《善恶的彼岸》

什么是网络色情?严谨的定义就是:凡是网络上以性或人体裸露为主要诉求的讯息,其目的在于挑逗引发使用者的性欲,表现方式可以是透过文字、声音、影像、图片、漫画等。

网络色情发展史

  • 互联网萌芽年代 邮件传输——当时在大学科研院所以及一些公司,已经有人通过软盘、邮件来传输一些来自台湾、日本的纯色情文字。

  • 互联网普及年代 搜索引擎之SEX和XXX搜索——有了搜索引擎,给网络色情的中国的发展带了巨大的发展。96年的YAHOO,97年国内的SOHOO,其搜索结构中,SEX和XXX主体字的搜索占了很大的比例。

  • 互联网发展年代 个人主页、情色电影、明星图片、性爱课堂、色情文学

  1. 个人网站初期,色情的躲避和小范围传播:98年,国内的碧海银沙和网易推出了免费申请的个人主页空间,网络用户大量增加。当时的政策是,一旦发现某个个人网站中有色情成分,如果被空间提供商发现,就会停止器个人空间,如果被公安局发现,就会连带影响到整台服务器。 门户网站的边缘内容从情色电影、明星图片到性爱课堂:99年国内开始出现门户的概念,以大内容吸引更多网民访问的网站,已经主动提供了一些可算可不算色情的内容,比如提供情色电影海报,介绍等,特别是各种明星图片。

Continue Reading

Porn Data Anaylize — 分类数据二次分析

我真的是以欣赏的角度看的,挺好看。很有态度,感觉真的像一个传媒公司,镜头,画面,转场,特写都很专业。艺人也是很敬业,很佩服他们. ..
U1S1演员确实没研究,怎么说也是小电影还是需要演技的。但这些演员都是真刀真枪的干。要是能真的请到传媒学院的或者那些圈里的明星估计会更好。– 糊胡涂

我没有要传播色情的意思,只是对于爬取的数据进行分析的时候,总会有些出乎意料的发现。在国内所有的情色内容都是不合法的,但是违法的事情确并没有因此而销声匿迹。通过最近的分析,我发现色情产业这个规模异常的庞大。原来想写一篇简单的分析文章,现在却发现自己分析的不过是冰山一角。现在的色情行业已经不再仅仅局限于提供色情视频的观看,点播下载。现在基于各种直播平台的在线直播,打赏,网红主播,TS CD,甚至有专门的编剧,导演拍摄,并且喊着口号甚至要超越日本,成为世界第一。

大家好,我是麻豆傳媒P先生。 謝謝大家一直對麻豆的支持,我們想打造屬於華人的中文市場,不讓日本一直走在我們前面,我們持續努力前行,打造華人的驕傲! 最近有許多人不斷的盜取麻豆的原創影片,我想這可能是大家還不習慣屬於華人國產影片的出現。感謝所有的同行跟我們一起努力,為每個人的夜晚去打造歡愉,但是盜取麻豆的影片只會讓歡愉更快的消失,讓華人國產停滯不前。 –麻豆传媒

Continue Reading

Porn Data Anaylize — TS伪娘 分类数据浅析

所谓“伪娘”,即通过女装、化妆等手法让外人认为是女性的男性,我们通常可以在各地的漫展上看到相当数量的“伪娘”,这也是二次元文化中的萌属性之一。
而“药娘”则不同,简单来说就是心理性别为女,生理性别为男的跨性别者,他们通常是依靠激素药物改变内分泌,从而让自己身体特征逐渐接近女性。这个群体的人数非常稀少且又特殊,直至去年(2016年?根据参考链接文章编辑时间推测。)才在网络上出现相关讨论,但目前并没有引起社会的广泛关注。

Continue Reading

Porn Data Anaylize — AI换脸 分类数据浅析(github)

声明:本文中所有数据都是来源于第三方福利网站的数据,本文仅对数据中相关的信息进行解析。本人非常喜欢这些女明星,绝无抹黑之意。

from pyspark.sql.functions import col
import altair as alt
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
csv = spark.read.option("header",True).csv("hdfs://localhost:9000/data2/porn_data_movie.csv")
csv.printSchema()
root
 |-- id: string (nullable = true)
 |-- create: string (nullable = true)
 |-- update: string (nullable = true)
 |-- name: string (nullable = true)
 |-- describe: string (nullable = true)
 |-- source_id: string (nullable = true)
 |-- publish_time: string (nullable = true)
 |-- play_count: string (nullable = true)
 |-- good_count: string (nullable = true)
 |-- bad_count: string (nullable = true)
 |-- link_count: string (nullable = true)
 |-- comment_count: string (nullable = true)
 |-- designation: string (nullable = true)
 |-- category_id: string (nullable = true)
 |-- porn_site_id: string (nullable = true)
 |-- uploader_id: string (nullable = true)
 |-- producer: string (nullable = true)
Continue Reading

Porn Data Anaylize — 标签 模特信息分析(github)

from pyspark.sql.functions import col
import altair as alt

import pandas as pd
from matplotlib import pyplot as plt
get_ipython().run_line_magic('matplotlib', 'inline')
csv = spark.read.option("header",True).csv("hdfs://localhost:9000/data2/porn_data_movie_tags.csv")
tag_csv = spark.read.option("header",True).csv("hdfs://localhost:9000/data2/porn_data_tag.csv")
csv.show()

+---+--------+------+
| id|movie_id|tag_id|
+---+--------+------+
|  1|    9909|     1|
|  2|    9909|     2|
|  3|    9909|     3|
|  4|    9909|     4|
|  5|    9910|     5|
|  6|    9910|     6|
|  7|    9910|     7|
|  8|    9910|     8|
|  9|    9910|     9|
| 10|    9910|    10|
| 11|    9911|    12|
| 12|    9911|     2|
| 13|    9911|     1|
| 14|    9911|    13|
| 15|    9910|    11|
| 16|    9911|    14|
| 17|    9911|    15|
| 18|    9911|     5|
| 19|    9910|    16|
| 20|    9910|    17|
+---+--------+------+
only showing top 20 rows

Continue Reading