让自己变成AV的主角【faceswap】

最近在研究faceswap相关的内容,通过百度搜索了各种教程之后,发现相关的文章不少,但是内容基本一致,差不多的复制粘贴。按照帖子中的操作步骤进行之后发现效果不忍直视,具体的替换之后的图就不贴了。直到从官网看到相关的文章之后才发现那些简明操作步骤基本都是错误的。
原始文章链接:https://forum.faceswap.dev/viewtopic.php?f=5&t=27 包括一些名词解释也可以参考这个链接。本文只是简单记录下相关的步骤。其余的一些内容可以参考原文链接。

1. 提取人脸数据

Continue Reading

安卓广告跳过 yolov5 ncnn方式集成

代码原地址: https://github.com/nihui/ncnn-android-yolov5
我在这里只是替换了模型信息,其余的内容基本没有修改。
原工程并没有写如何进行模型转换,模型转换可以参考这篇文章:https://blog.csdn.net/flyfish1986/article/details/116604907里面写的比较详细了。
这里简单的做个备份,不想跳转的可以直接参考下面的内容:

模型转换为ncnn格式

  1. 导出onnx
    bash
    python models/export.py --weights yolov5s.pt --img 320 --batch 1
  2. onnx-simplifer简化模型 bash
    python -m onnxsim yolov5s.onnx yolov5s-sim.onnx
  3. 专函为ncnn bash
    ./onnx2ncnn yolov5s-sim.onnx yolov5s.param yolov5s.bin
  4. 处理转ncnn产生的Unsupported slice step !
    1).处理YOLOv5的Focus模块,将多个slice节点转换为一个focus节点
    slices
Continue Reading

Yolov5 tf-lite方式导出

在之前的文章《Yolov5 Android tf-lite方式集成》中,导出tf-lite方式的模型使用的是https://github.com/zldrobit/yolov5.git中的tf.py。晚上尝试用yolov5 最新版本的代码的export.py导出,如果不想修改命令行参数,可以字节修改以下代码:

# 需要修改参数 data weights batch-size
def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str, default=ROOT / 'data/ads.yaml', help='dataset.yaml path')
    parser.add_argument('--weights', type=str, default=ROOT / 'best.pt', help='weights path')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
    parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
    parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
    parser.add_argument('--train', action='store_true', help='model.train() mode')
    parser.add_argument('--optimize',default=True, action='store_true', help='TorchScript: optimize for mobile')
    parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
    parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes')
    parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
    parser.add_argument('--opset', type=int, default=13, help='ONNX: opset version')
    parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
    parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
    parser.add_argument('--include', nargs='+',
                        default=['torchscript', 'onnx'],
                        help='available formats are (torchscript, onnx, coreml, saved_model, pb, tflite, tfjs)')
    opt = parser.parse_args()
    print_args(FILE.stem, opt)
    return opt
Continue Reading

Yolov5 Android tf-lite方式集成

上一篇文章中提到的torchscript方式在手机上实际的检测效果差了很多,于是尝试了另外两种方式,第二种方式目前还有问题,所以就先不写了。这篇文章介绍的是第三种方法。zldrobit创建了一个ftlite的分支,https://github.com/zldrobit/yolov5.git。要使用这个方法文章中步骤也写的比较详细了。

1.克隆相关的分支:

git clone https://github.com/zldrobit/yolov5.git
cd yolov5
git checkout tf-android
Continue Reading